Models of Set Theory II - Winter 2013

Prof. Dr. Peter Koepke, Dr. Philipp Schlicht
Problem sheet 5

Problem 16 (6 Points). Suppose that κ is an infinite regular cardinal, $\left(P, \leq_{P}, 1_{P}\right)$ is a κ-distributive partial order, and $\dot{Q}, \dot{\leq}_{Q}, \dot{1}_{Q}$ are P-names such that

$$
1_{P} \Vdash_{P} "\left(\dot{Q}, \dot{\leq}_{Q}, \dot{1}_{Q}\right) \text { is a } \kappa-\text { distributive partial order". }
$$

Show that $P * \dot{Q}$ is κ-distributive.

Problem 17 (4 Points). Suppose that κ is an infinite cardinal.
(a) Show that $H_{\kappa^{+}} \prec \Sigma_{1} V$. (Hint: form the transitive collapse of a witness for the Σ_{1} statement together with the transitive closure of the parameters)
(b) Show that $H_{\omega_{1}} \not \Sigma_{2} V$.

Problem 18 (8 Points). Suppose that $(B, \leq, \wedge, \vee, 0,1)$ is a complete Boolean algebra and $S \subseteq B^{*}:=B \backslash\{0\}$.
(a) Show that $p \wedge \bigvee S=\bigvee\{p \wedge s \mid s \in S\}$ (hint: show that $s=(p \wedge s) \vee(\neg p \wedge s)$ for each $s \in S)$.
(b) Show that the following conditions are equivalent:
(i) S is predense below p (i.e. every $q \leq p$ is compatible with some $s \in S$),
(ii) q is compatible with $\bigvee S$ for all $q \leq p$,
(iii) $p \leq \bigvee S$.
(c) Now suppose that M is a ground model and that $(B, \leq, \wedge, \vee, 0,1)$ is a complete Boolean algebra in M. Suppose that φ is a formula and $\sigma \in M^{B}$. Let $q:=\llbracket \varphi(\sigma) \rrbracket:=\bigvee\left\{p \mid p \Vdash_{B^{*}}^{M} \varphi(\sigma)\right\}$. Show that

$$
q \Vdash_{B^{*}}^{M} \varphi(\sigma)
$$

(in particular, $\{\llbracket \varphi(\sigma) \rrbracket, \llbracket \neg \varphi(\sigma) \rrbracket\}$ is a maximal antichain in B^{*}).

Problem 19 (4 Points). Suppose that M is a ground model. Suppose that in M, $\left(P_{n}, \leq_{n}, 1_{P_{n}}\right)_{n \leq \omega}$ is a finite support iteration of $\left(\dot{Q}_{n}, \dot{\leq}_{Q_{m}}, \dot{1}_{Q_{n}}\right)_{n<\omega}$ such that
(i) $P_{0}=\operatorname{Add}\left(\omega_{1}, 1\right)$ and
(ii) $1_{P_{n}} \vdash_{P_{n}} " \dot{Q}_{n}=\operatorname{Add}\left(\omega_{1}, 1\right) "$ for all $n<\omega$.

If G is P_{ω}-generic over M, show that there is a Cohen real over M in $M[G]$.

Problem 20 (Extra problem, 6 Points). Suppose that M is a ground model. Suppose that in $M,\left(P_{n}, \leq_{n}, 1_{P_{n}}\right)_{n \leq \omega}$ is a finite support iteration of $\left(\dot{Q}_{n}, \dot{\leq}_{Q_{m}}, \dot{1}_{Q_{n}}\right)_{n<\omega}$ such that for all $n<\omega, 1_{P_{n}} \Vdash_{P_{n}} \dot{Q}_{n}$ is nonatomic.

Suppose that G is P_{ω}-generic over M. Show that there is a Cohen real over M in $M[G]$ (Hint: We can assume that there is an ordinal λ such that for all $n<\omega$, $\left.1_{P_{n}} \Vdash_{P_{n}} " \operatorname{dom}\left(\dot{Q}_{n}\right) \subseteq \lambda "\right)$.

Please hand in your solutions on Monday, November 25 before the lecture.

