Prof. Dr. Peter Koepke, Dr. Philipp Schlicht	Problem sheet 5
--	-----------------

Problem 16 (6 Points). Suppose that κ is an infinite regular cardinal, $(P, \leq_P, 1_P)$ is a κ -distributive partial order, and $\dot{Q}, \dot{\leq}_Q, \dot{1}_Q$ are *P*-names such that

 $1_P \Vdash_P "(\dot{Q}, \leq_Q, \dot{1}_Q)$ is a κ – distributive partial order".

Show that $P * \dot{Q}$ is κ -distributive.

Problem 17 (4 Points). Suppose that κ is an infinite cardinal.

- (a) Show that $H_{\kappa^+} \prec_{\Sigma_1} V$. (*Hint: form the transitive collapse of a witness for* the Σ_1 statement together with the transitive closure of the parameters)
- (b) Show that $H_{\omega_1} \not\prec_{\Sigma_2} V$.

Problem 18 (8 Points). Suppose that $(B, \leq, \land, \lor, 0, 1)$ is a complete Boolean algebra and $S \subseteq B^* := B \setminus \{0\}$.

- (a) Show that $p \land \bigvee S = \bigvee \{p \land s \mid s \in S\}$ (*hint: show that* $s = (p \land s) \lor (\neg p \land s)$ for each $s \in S$).
- (b) Show that the following conditions are equivalent:
 - (i) S is predense below p (i.e. every $q \le p$ is compatible with some $s \in S$),
 - (ii) q is compatible with $\bigvee S$ for all $q \leq p$,
 - (iii) $p \leq \bigvee S$.
- (c) Now suppose that M is a ground model and that $(B, \leq, \land, \lor, 0, 1)$ is a complete Boolean algebra in M. Suppose that φ is a formula and $\sigma \in M^B$. Let $q := \llbracket \varphi(\sigma) \rrbracket := \bigvee \{ p \mid p \Vdash_{B^*}^M \varphi(\sigma) \}$. Show that

 $q \Vdash_{B^*}^M \varphi(\sigma)$

(in particular, $\{\llbracket \varphi(\sigma) \rrbracket, \llbracket \neg \varphi(\sigma) \rrbracket\}$ is a maximal antichain in B^*).

Problem 19 (4 Points). Suppose that M is a ground model. Suppose that in M, $(P_n, \leq_n, 1_{P_n})_{n \leq \omega}$ is a finite support iteration of $(\dot{Q}_n, \leq_{Q_m}, \dot{1}_{Q_n})_{n < \omega}$ such that

- (i) $P_0 = Add(\omega_1, 1)$ and
- (ii) $1_{P_n} \Vdash_{P_n} "\dot{Q}_n = Add(\omega_1, 1)"$ for all $n < \omega$.

If G is P_{ω} -generic over M, show that there is a Cohen real over M in M[G].

Problem 20 (Extra problem, 6 Points). Suppose that M is a ground model. Suppose that in M, $(P_n, \leq_n, 1_{P_n})_{n \leq \omega}$ is a finite support iteration of $(\dot{Q}_n, \dot{\leq}_{Q_m}, \dot{1}_{Q_n})_{n < \omega}$ such that for all $n < \omega$, $1_{P_n} \Vdash_{P_n} \dot{Q}_n$ is nonatomic.

Suppose that G is P_{ω} -generic over M. Show that there is a Cohen real over M in M[G] (*Hint: We can assume that there is an ordinal* λ *such that for all* $n < \omega$, $1_{P_n} \Vdash_{P_n} "dom(\dot{Q}_n) \subseteq \lambda ").$ Please hand in your solutions on Monday, November 25 before the lecture.